939 lines
34 KiB
Rust
939 lines
34 KiB
Rust
use std::{
|
|
cmp::Reverse,
|
|
collections::{BTreeMap, BTreeSet, BinaryHeap},
|
|
sync::Arc,
|
|
time::SystemTime,
|
|
};
|
|
|
|
use maplit::btreeset;
|
|
use ruma::{
|
|
events::EventType,
|
|
identifiers::{EventId, RoomId, RoomVersionId},
|
|
};
|
|
|
|
mod error;
|
|
pub mod event_auth;
|
|
pub mod room_version;
|
|
mod state_event;
|
|
mod state_store;
|
|
|
|
pub use error::{Error, Result};
|
|
pub use event_auth::{auth_check, auth_types_for_event};
|
|
pub use state_event::{Requester, StateEvent};
|
|
pub use state_store::StateStore;
|
|
|
|
// We want to yield to the reactor occasionally during state res when dealing
|
|
// with large data sets, so that we don't exhaust the reactor. This is done by
|
|
// yielding to reactor during loops every N iterations.
|
|
const _YIELD_AFTER_ITERATIONS: usize = 100;
|
|
|
|
/// A mapping of event type and state_key to some value `T`, usually an `EventId`.
|
|
pub type StateMap<T> = BTreeMap<(EventType, String), T>;
|
|
|
|
/// A mapping of `EventId` to `T`, usually a `StateEvent`.
|
|
pub type EventMap<T> = BTreeMap<EventId, T>;
|
|
|
|
#[derive(Default)]
|
|
pub struct StateResolution;
|
|
|
|
impl StateResolution {
|
|
/// Check if the `incoming_event` can be included in the given `current_state`.
|
|
///
|
|
/// This will authenticate the event against the current state of the room. It
|
|
/// is important that the `current_state` argument is accurate and complete.
|
|
pub fn apply_event(
|
|
room_id: &RoomId,
|
|
room_version: &RoomVersionId,
|
|
incoming_event: Arc<StateEvent>,
|
|
current_state: &StateMap<EventId>,
|
|
event_map: Option<EventMap<Arc<StateEvent>>>,
|
|
store: &dyn StateStore,
|
|
) -> Result<bool> {
|
|
tracing::info!("Applying a single event, state resolution starting");
|
|
let ev = incoming_event;
|
|
|
|
let mut event_map = if let Some(ev_map) = event_map {
|
|
ev_map
|
|
} else {
|
|
EventMap::new()
|
|
};
|
|
let prev_event = if let Some(id) = ev.prev_event_ids().first() {
|
|
store.get_event(room_id, id).ok()
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let mut auth_events = StateMap::new();
|
|
for key in event_auth::auth_types_for_event(
|
|
ev.kind(),
|
|
ev.sender(),
|
|
Some(ev.state_key()),
|
|
ev.content().clone(),
|
|
) {
|
|
if let Some(ev_id) = current_state.get(&key) {
|
|
if let Some(event) =
|
|
StateResolution::get_or_load_event(room_id, ev_id, &mut event_map, store)
|
|
{
|
|
// TODO synapse checks `rejected_reason` is None here
|
|
auth_events.insert(key.clone(), event);
|
|
}
|
|
}
|
|
}
|
|
|
|
event_auth::auth_check(room_version, &ev, prev_event, auth_events, None)
|
|
}
|
|
|
|
pub fn resolve_incoming(
|
|
room_id: &RoomId,
|
|
room_version: &RoomVersionId,
|
|
unconflicted: &StateMap<EventId>,
|
|
conflicted: Vec<((EventType, String), EventId)>,
|
|
event_map: Option<EventMap<Arc<StateEvent>>>,
|
|
store: &dyn StateStore,
|
|
) -> Result<StateMap<EventId>> {
|
|
let mut event_map = if let Some(ev_map) = event_map {
|
|
ev_map
|
|
} else {
|
|
BTreeMap::new()
|
|
};
|
|
|
|
let all_ids = vec![
|
|
unconflicted.values().cloned().collect(),
|
|
// conflicted can contain duplicates no BTreeMaps
|
|
conflicted.iter().map(|(_, v)| v).cloned().collect(),
|
|
];
|
|
// We use the store here since it takes a Vec<Vec> instead of Vec<Maps> like
|
|
// `StateResolution::get_auth_chain_diff`
|
|
let mut auth_diff = store.auth_chain_diff(room_id, all_ids)?;
|
|
|
|
tracing::debug!("auth diff size {}", auth_diff.len());
|
|
|
|
// add the auth_diff to conflicting now we have a full set of conflicting events
|
|
auth_diff.extend(conflicted.iter().map(|(_, v)| v).cloned());
|
|
let mut all_conflicted = auth_diff
|
|
.into_iter()
|
|
.collect::<BTreeSet<_>>()
|
|
.into_iter()
|
|
.collect::<Vec<_>>();
|
|
|
|
tracing::info!("full conflicted set is {} events", all_conflicted.len());
|
|
|
|
// gather missing events for the event_map
|
|
let events = store
|
|
.get_events(
|
|
room_id,
|
|
&all_conflicted
|
|
.iter()
|
|
// we only want the events we don't know about yet
|
|
.filter(|id| !event_map.contains_key(id))
|
|
.cloned()
|
|
.collect::<Vec<_>>(),
|
|
)
|
|
.unwrap();
|
|
|
|
// update event_map to include the fetched events
|
|
event_map.extend(events.into_iter().map(|ev| (ev.event_id(), ev)));
|
|
|
|
// Don't honor events we cannot verify.
|
|
all_conflicted.retain(|id| event_map.contains_key(id));
|
|
|
|
// get only the control events with a state_key: "" or ban/kick event (sender != state_key)
|
|
let control_events = all_conflicted
|
|
.iter()
|
|
.filter(|id| is_power_event(id, &event_map))
|
|
.cloned()
|
|
.collect::<Vec<_>>();
|
|
|
|
// sort the control events based on power_level/clock/event_id and outgoing/incoming edges
|
|
let mut sorted_control_levels = StateResolution::reverse_topological_power_sort(
|
|
room_id,
|
|
&control_events,
|
|
&mut event_map,
|
|
store,
|
|
&all_conflicted,
|
|
);
|
|
|
|
// sequentially auth check each control event.
|
|
let resolved_control = StateResolution::iterative_auth_check(
|
|
room_id,
|
|
room_version,
|
|
&sorted_control_levels,
|
|
unconflicted,
|
|
&mut event_map,
|
|
store,
|
|
)?;
|
|
|
|
// At this point the control_events have been resolved we now have to
|
|
// sort the remaining events using the mainline of the resolved power level.
|
|
sorted_control_levels.dedup();
|
|
let deduped_power_ev = sorted_control_levels;
|
|
|
|
// This removes the control events that passed auth and more importantly those that failed auth
|
|
let events_to_resolve = all_conflicted
|
|
.iter()
|
|
.filter(|id| !deduped_power_ev.contains(id))
|
|
.cloned()
|
|
.collect::<Vec<_>>();
|
|
|
|
// This "epochs" power level event
|
|
let power_event = resolved_control.get(&(EventType::RoomPowerLevels, "".into()));
|
|
|
|
tracing::debug!("PL {:?}", power_event);
|
|
|
|
let sorted_left_events = StateResolution::mainline_sort(
|
|
room_id,
|
|
&events_to_resolve,
|
|
power_event,
|
|
&mut event_map,
|
|
store,
|
|
);
|
|
|
|
tracing::debug!(
|
|
"SORTED LEFT {:?}",
|
|
sorted_left_events
|
|
.iter()
|
|
.map(ToString::to_string)
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
let mut resolved_state = StateResolution::iterative_auth_check(
|
|
room_id,
|
|
room_version,
|
|
&sorted_left_events,
|
|
&resolved_control, // the control events are added to the final resolved state
|
|
&mut event_map,
|
|
store,
|
|
)?;
|
|
|
|
// add unconflicted state to the resolved state
|
|
resolved_state.extend(unconflicted.clone());
|
|
|
|
Ok(resolved_state)
|
|
}
|
|
|
|
/// Resolve sets of state events as they come in. Internally `StateResolution` builds a graph
|
|
/// and an auth chain to allow for state conflict resolution.
|
|
///
|
|
/// ## Arguments
|
|
///
|
|
/// * `state_sets` - The incoming state to resolve. Each `StateMap` represents a possible fork
|
|
/// in the state of a room.
|
|
///
|
|
/// * `event_map` - The `EventMap` acts as a local cache of state, any event that is not found
|
|
/// in the `event_map` will be fetched from the `StateStore` and cached in the `event_map`. There
|
|
/// is no state kept from separate `resolve` calls, although this could be a potential optimization
|
|
/// in the future.
|
|
///
|
|
/// * `store` - Any type that implements `StateStore` acts as the database. When an event is not
|
|
/// found in the `event_map` it will be retrieved from the `store`.
|
|
///
|
|
/// It is up the the caller to check that the events returned from `StateStore::get_event` are
|
|
/// events for the correct room (synapse checks that all events are in the right room).
|
|
pub fn resolve(
|
|
room_id: &RoomId,
|
|
room_version: &RoomVersionId,
|
|
state_sets: &[StateMap<EventId>],
|
|
event_map: Option<EventMap<Arc<StateEvent>>>,
|
|
store: &dyn StateStore,
|
|
) -> Result<StateMap<EventId>> {
|
|
tracing::info!("State resolution starting");
|
|
|
|
let mut event_map = if let Some(ev_map) = event_map {
|
|
ev_map
|
|
} else {
|
|
EventMap::new()
|
|
};
|
|
// split non-conflicting and conflicting state
|
|
let (clean, conflicting) = StateResolution::separate(&state_sets);
|
|
|
|
tracing::info!("non conflicting {:?}", clean.len());
|
|
|
|
if conflicting.is_empty() {
|
|
tracing::info!("no conflicting state found");
|
|
return Ok(clean);
|
|
}
|
|
|
|
tracing::info!("{} conflicting events", conflicting.len());
|
|
|
|
// the set of auth events that are not common across server forks
|
|
let mut auth_diff = StateResolution::get_auth_chain_diff(room_id, &state_sets, store)?;
|
|
|
|
tracing::debug!("auth diff size {}", auth_diff.len());
|
|
|
|
// add the auth_diff to conflicting now we have a full set of conflicting events
|
|
auth_diff.extend(conflicting.values().cloned().flatten());
|
|
let mut all_conflicted = auth_diff
|
|
.into_iter()
|
|
.collect::<BTreeSet<_>>()
|
|
.into_iter()
|
|
.collect::<Vec<_>>();
|
|
|
|
tracing::info!("full conflicted set is {} events", all_conflicted.len());
|
|
|
|
// gather missing events for the event_map
|
|
let events = store
|
|
.get_events(
|
|
room_id,
|
|
&all_conflicted
|
|
.iter()
|
|
// we only want the events we don't know about yet
|
|
.filter(|id| !event_map.contains_key(id))
|
|
.cloned()
|
|
.collect::<Vec<_>>(),
|
|
)
|
|
.unwrap();
|
|
|
|
// update event_map to include the fetched events
|
|
event_map.extend(events.into_iter().map(|ev| (ev.event_id(), ev)));
|
|
// at this point our event_map == store there should be no missing events
|
|
|
|
tracing::debug!("event map size: {}", event_map.len());
|
|
|
|
// we used to check that all events are events from the correct room
|
|
// this is now a check the caller of `resolve` must make.
|
|
|
|
// synapse says `full_set = {eid for eid in full_conflicted_set if eid in event_map}`
|
|
//
|
|
// don't honor events we cannot "verify"
|
|
all_conflicted.retain(|id| event_map.contains_key(id));
|
|
|
|
// get only the control events with a state_key: "" or ban/kick event (sender != state_key)
|
|
let control_events = all_conflicted
|
|
.iter()
|
|
.filter(|id| is_power_event(id, &event_map))
|
|
.cloned()
|
|
.collect::<Vec<_>>();
|
|
|
|
// sort the control events based on power_level/clock/event_id and outgoing/incoming edges
|
|
let mut sorted_control_levels = StateResolution::reverse_topological_power_sort(
|
|
room_id,
|
|
&control_events,
|
|
&mut event_map,
|
|
store,
|
|
&all_conflicted,
|
|
);
|
|
|
|
tracing::debug!(
|
|
"SRTD {:?}",
|
|
sorted_control_levels
|
|
.iter()
|
|
.map(ToString::to_string)
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
// sequentially auth check each control event.
|
|
let resolved_control = StateResolution::iterative_auth_check(
|
|
room_id,
|
|
room_version,
|
|
&sorted_control_levels,
|
|
&clean,
|
|
&mut event_map,
|
|
store,
|
|
)?;
|
|
|
|
tracing::debug!(
|
|
"AUTHED {:?}",
|
|
resolved_control
|
|
.iter()
|
|
.map(|(key, id)| (key, id.to_string()))
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
// At this point the control_events have been resolved we now have to
|
|
// sort the remaining events using the mainline of the resolved power level.
|
|
sorted_control_levels.dedup();
|
|
let deduped_power_ev = sorted_control_levels;
|
|
|
|
// This removes the control events that passed auth and more importantly those that failed auth
|
|
let events_to_resolve = all_conflicted
|
|
.iter()
|
|
.filter(|id| !deduped_power_ev.contains(id))
|
|
.cloned()
|
|
.collect::<Vec<_>>();
|
|
|
|
tracing::debug!(
|
|
"LEFT {:?}",
|
|
events_to_resolve
|
|
.iter()
|
|
.map(ToString::to_string)
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
// This "epochs" power level event
|
|
let power_event = resolved_control.get(&(EventType::RoomPowerLevels, "".into()));
|
|
|
|
tracing::debug!("PL {:?}", power_event);
|
|
|
|
let sorted_left_events = StateResolution::mainline_sort(
|
|
room_id,
|
|
&events_to_resolve,
|
|
power_event,
|
|
&mut event_map,
|
|
store,
|
|
);
|
|
|
|
tracing::debug!(
|
|
"SORTED LEFT {:?}",
|
|
sorted_left_events
|
|
.iter()
|
|
.map(ToString::to_string)
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
let mut resolved_state = StateResolution::iterative_auth_check(
|
|
room_id,
|
|
room_version,
|
|
&sorted_left_events,
|
|
&resolved_control, // the control events are added to the final resolved state
|
|
&mut event_map,
|
|
store,
|
|
)?;
|
|
|
|
// add unconflicted state to the resolved state
|
|
resolved_state.extend(clean);
|
|
|
|
Ok(resolved_state)
|
|
}
|
|
|
|
/// Split the events that have no conflicts from those that are conflicting.
|
|
/// The return tuple looks like `(unconflicted, conflicted)`.
|
|
///
|
|
/// State is determined to be conflicting if for the given key (EventType, StateKey) there
|
|
/// is not exactly one eventId. This includes missing events, if one state_set includes an event
|
|
/// that none of the other have this is a conflicting event.
|
|
pub fn separate(
|
|
state_sets: &[StateMap<EventId>],
|
|
) -> (StateMap<EventId>, StateMap<Vec<EventId>>) {
|
|
use itertools::Itertools;
|
|
|
|
tracing::info!(
|
|
"seperating {} sets of events into conflicted/unconflicted",
|
|
state_sets.len()
|
|
);
|
|
|
|
let mut unconflicted_state = StateMap::new();
|
|
let mut conflicted_state = StateMap::new();
|
|
|
|
for key in state_sets.iter().flat_map(|map| map.keys()).dedup() {
|
|
let mut event_ids = state_sets
|
|
.iter()
|
|
.map(|state_set| state_set.get(key))
|
|
.dedup()
|
|
.collect::<Vec<_>>();
|
|
|
|
if event_ids.len() == 1 {
|
|
if let Some(Some(id)) = event_ids.pop() {
|
|
unconflicted_state.insert(key.clone(), id.clone());
|
|
} else {
|
|
panic!()
|
|
}
|
|
} else {
|
|
conflicted_state.insert(
|
|
key.clone(),
|
|
event_ids.into_iter().flatten().cloned().collect::<Vec<_>>(),
|
|
);
|
|
}
|
|
}
|
|
|
|
(unconflicted_state, conflicted_state)
|
|
}
|
|
|
|
/// Returns a Vec of deduped EventIds that appear in some chains but not others.
|
|
pub fn get_auth_chain_diff(
|
|
room_id: &RoomId,
|
|
state_sets: &[StateMap<EventId>],
|
|
store: &dyn StateStore,
|
|
) -> Result<Vec<EventId>> {
|
|
use itertools::Itertools;
|
|
|
|
tracing::debug!("calculating auth chain difference");
|
|
|
|
store.auth_chain_diff(
|
|
room_id,
|
|
state_sets
|
|
.iter()
|
|
.map(|map| map.values().cloned().collect())
|
|
.dedup()
|
|
.collect::<Vec<_>>(),
|
|
)
|
|
}
|
|
|
|
/// Events are sorted from "earliest" to "latest". They are compared using
|
|
/// the negative power level (reverse topological ordering), the
|
|
/// origin server timestamp and incase of a tie the `EventId`s
|
|
/// are compared lexicographically.
|
|
///
|
|
/// The power level is negative because a higher power level is equated to an
|
|
/// earlier (further back in time) origin server timestamp.
|
|
pub fn reverse_topological_power_sort(
|
|
room_id: &RoomId,
|
|
events_to_sort: &[EventId],
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
auth_diff: &[EventId],
|
|
) -> Vec<EventId> {
|
|
tracing::debug!("reverse topological sort of power events");
|
|
|
|
let mut graph = BTreeMap::new();
|
|
for (idx, event_id) in events_to_sort.iter().enumerate() {
|
|
StateResolution::add_event_and_auth_chain_to_graph(
|
|
room_id, &mut graph, event_id, event_map, store, auth_diff,
|
|
);
|
|
|
|
// We yield occasionally when we're working with large data sets to
|
|
// ensure that we don't block the reactor loop for too long.
|
|
if idx % _YIELD_AFTER_ITERATIONS == 0 {
|
|
// yield clock.sleep(0)
|
|
}
|
|
}
|
|
|
|
// this is used in the `key_fn` passed to the lexico_topo_sort fn
|
|
let mut event_to_pl = BTreeMap::new();
|
|
for (idx, event_id) in graph.keys().enumerate() {
|
|
let pl =
|
|
StateResolution::get_power_level_for_sender(room_id, &event_id, event_map, store);
|
|
tracing::info!("{} power level {}", event_id.to_string(), pl);
|
|
|
|
event_to_pl.insert(event_id.clone(), pl);
|
|
|
|
// We yield occasionally when we're working with large data sets to
|
|
// ensure that we don't block the reactor loop for too long.
|
|
if idx % _YIELD_AFTER_ITERATIONS == 0 {
|
|
// yield clock.sleep(0)
|
|
}
|
|
}
|
|
|
|
StateResolution::lexicographical_topological_sort(&graph, |event_id| {
|
|
// tracing::debug!("{:?}", event_map.get(event_id).unwrap().origin_server_ts());
|
|
let ev = event_map.get(event_id).unwrap();
|
|
let pl = event_to_pl.get(event_id).unwrap();
|
|
|
|
tracing::debug!("{:?}", (-*pl, *ev.origin_server_ts(), ev.event_id()));
|
|
|
|
// This return value is the key used for sorting events,
|
|
// events are then sorted by power level, time,
|
|
// and lexically by event_id.
|
|
(-*pl, *ev.origin_server_ts(), ev.event_id())
|
|
})
|
|
}
|
|
|
|
/// Sorts the event graph based on number of outgoing/incoming edges, where
|
|
/// `key_fn` is used as a tie breaker. The tie breaker happens based on
|
|
/// power level, age, and event_id.
|
|
pub fn lexicographical_topological_sort<F>(
|
|
graph: &BTreeMap<EventId, Vec<EventId>>,
|
|
key_fn: F,
|
|
) -> Vec<EventId>
|
|
where
|
|
F: Fn(&EventId) -> (i64, SystemTime, EventId),
|
|
{
|
|
tracing::info!("starting lexicographical topological sort");
|
|
// NOTE: an event that has no incoming edges happened most recently,
|
|
// and an event that has no outgoing edges happened least recently.
|
|
|
|
// NOTE: this is basically Kahn's algorithm except we look at nodes with no
|
|
// outgoing edges, c.f.
|
|
// https://en.wikipedia.org/wiki/Topological_sorting#Kahn's_algorithm
|
|
|
|
// TODO make the BTreeSet conversion cleaner ??
|
|
// outdegree_map is an event referring to the events before it, the
|
|
// more outdegree's the more recent the event.
|
|
let mut outdegree_map: BTreeMap<EventId, BTreeSet<EventId>> = graph
|
|
.iter()
|
|
.map(|(k, v)| (k.clone(), v.iter().cloned().collect()))
|
|
.collect();
|
|
|
|
// The number of events that depend on the given event (the eventId key)
|
|
let mut reverse_graph = BTreeMap::new();
|
|
|
|
// Vec of nodes that have zero out degree, least recent events.
|
|
let mut zero_outdegree = vec![];
|
|
|
|
for (node, edges) in graph.iter() {
|
|
if edges.is_empty() {
|
|
// the `Reverse` is because rusts `BinaryHeap` sorts largest -> smallest we need
|
|
// smallest -> largest
|
|
zero_outdegree.push(Reverse((key_fn(node), node)));
|
|
}
|
|
|
|
reverse_graph.entry(node).or_insert(btreeset![]);
|
|
for edge in edges {
|
|
reverse_graph
|
|
.entry(edge)
|
|
.or_insert(btreeset![])
|
|
.insert(node);
|
|
}
|
|
}
|
|
|
|
let mut heap = BinaryHeap::from(zero_outdegree);
|
|
|
|
// we remove the oldest node (most incoming edges) and check against all other
|
|
let mut sorted = vec![];
|
|
// destructure the `Reverse` and take the smallest `node` each time
|
|
while let Some(Reverse((_, node))) = heap.pop() {
|
|
let node: &EventId = node;
|
|
for parent in reverse_graph.get(node).unwrap() {
|
|
// the number of outgoing edges this node has
|
|
let out = outdegree_map.get_mut(parent).unwrap();
|
|
|
|
// only push on the heap once older events have been cleared
|
|
out.remove(node);
|
|
if out.is_empty() {
|
|
heap.push(Reverse((key_fn(parent), parent)));
|
|
}
|
|
}
|
|
|
|
// synapse yields we push then return the vec
|
|
sorted.push(node.clone());
|
|
}
|
|
|
|
sorted
|
|
}
|
|
|
|
/// Find the power level for the sender of `event_id` or return a default value of zero.
|
|
fn get_power_level_for_sender(
|
|
room_id: &RoomId,
|
|
event_id: &EventId,
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
) -> i64 {
|
|
tracing::info!("fetch event ({}) senders power level", event_id.to_string());
|
|
|
|
let event = StateResolution::get_or_load_event(room_id, event_id, event_map, store);
|
|
let mut pl = None;
|
|
|
|
// TODO store.auth_event_ids returns "self" with the event ids is this ok
|
|
// event.auth_event_ids does not include its own event id ?
|
|
for aid in event
|
|
.as_ref()
|
|
.map(|pdu| pdu.auth_events())
|
|
.unwrap_or_default()
|
|
{
|
|
if let Some(aev) = StateResolution::get_or_load_event(room_id, &aid, event_map, store) {
|
|
if aev.is_type_and_key(EventType::RoomPowerLevels, "") {
|
|
pl = Some(aev);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if pl.is_none() {
|
|
return 0;
|
|
}
|
|
|
|
if let Some(content) = pl
|
|
.map(|pl| {
|
|
pl.deserialize_content::<ruma::events::room::power_levels::PowerLevelsEventContent>(
|
|
)
|
|
.ok()
|
|
})
|
|
.flatten()
|
|
{
|
|
if let Some(ev) = event {
|
|
if let Some(user) = content.users.get(ev.sender()) {
|
|
tracing::debug!("found {} at power_level {}", ev.sender().to_string(), user);
|
|
return (*user).into();
|
|
}
|
|
}
|
|
content.users_default.into()
|
|
} else {
|
|
0
|
|
}
|
|
}
|
|
|
|
/// Check the that each event is authenticated based on the events before it.
|
|
///
|
|
/// ## Returns
|
|
///
|
|
/// The `unconflicted_state` combined with the newly auth'ed events. So any event that
|
|
/// fails the `event_auth::auth_check` will be excluded from the returned `StateMap<EventId>`.
|
|
///
|
|
/// For each `events_to_check` event we gather the events needed to auth it from the
|
|
/// `event_map` or `store` and verify each event using the `event_auth::auth_check`
|
|
/// function.
|
|
pub fn iterative_auth_check(
|
|
room_id: &RoomId,
|
|
room_version: &RoomVersionId,
|
|
events_to_check: &[EventId],
|
|
unconflicted_state: &StateMap<EventId>,
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
) -> Result<StateMap<EventId>> {
|
|
tracing::info!("starting iterative auth check");
|
|
|
|
tracing::debug!(
|
|
"performing auth checks on {:?}",
|
|
events_to_check
|
|
.iter()
|
|
.map(ToString::to_string)
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
let mut resolved_state = unconflicted_state.clone();
|
|
|
|
for (idx, event_id) in events_to_check.iter().enumerate() {
|
|
let event =
|
|
StateResolution::get_or_load_event(room_id, event_id, event_map, store).unwrap();
|
|
|
|
let mut auth_events = BTreeMap::new();
|
|
for aid in event.auth_events() {
|
|
if let Some(ev) =
|
|
StateResolution::get_or_load_event(room_id, &aid, event_map, store)
|
|
{
|
|
// TODO what to do when no state_key is found ??
|
|
// TODO synapse check "rejected_reason", I'm guessing this is redacted_because in ruma ??
|
|
auth_events.insert((ev.kind(), ev.state_key()), ev);
|
|
} else {
|
|
tracing::warn!("auth event id for {} is missing {}", aid, event_id);
|
|
}
|
|
}
|
|
|
|
for key in event_auth::auth_types_for_event(
|
|
event.kind(),
|
|
event.sender(),
|
|
Some(event.state_key()),
|
|
event.content().clone(),
|
|
) {
|
|
if let Some(ev_id) = resolved_state.get(&key) {
|
|
if let Some(event) =
|
|
StateResolution::get_or_load_event(room_id, ev_id, event_map, store)
|
|
{
|
|
// TODO synapse checks `rejected_reason` is None here
|
|
auth_events.insert(key.clone(), event);
|
|
}
|
|
}
|
|
}
|
|
|
|
tracing::debug!("event to check {:?}", event.event_id().as_str());
|
|
|
|
let most_recent_prev_event = event
|
|
.prev_event_ids()
|
|
.iter()
|
|
.filter_map(|id| StateResolution::get_or_load_event(room_id, id, event_map, store))
|
|
.next_back();
|
|
|
|
// The key for this is (eventType + a state_key of the signed token not sender) so search
|
|
// for it
|
|
let current_third_party = auth_events.iter().find_map(|(_, pdu)| {
|
|
if pdu.kind() == EventType::RoomThirdPartyInvite {
|
|
Some(pdu.clone()) // TODO no clone, auth_events is borrowed while moved
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
|
|
if event_auth::auth_check(
|
|
room_version,
|
|
&event,
|
|
most_recent_prev_event,
|
|
auth_events,
|
|
current_third_party,
|
|
)? {
|
|
// add event to resolved state map
|
|
resolved_state.insert((event.kind(), event.state_key()), event_id.clone());
|
|
} else {
|
|
// synapse passes here on AuthError. We do not add this event to resolved_state.
|
|
tracing::warn!(
|
|
"event {} failed the authentication check",
|
|
event_id.to_string()
|
|
);
|
|
}
|
|
|
|
// We yield occasionally when we're working with large data sets to
|
|
// ensure that we don't block the reactor loop for too long.
|
|
if idx % _YIELD_AFTER_ITERATIONS == 0 {
|
|
// yield clock.sleep(0)
|
|
}
|
|
}
|
|
Ok(resolved_state)
|
|
}
|
|
|
|
/// Returns the sorted `to_sort` list of `EventId`s based on a mainline sort using
|
|
/// the depth of `resolved_power_level`, the server timestamp, and the eventId.
|
|
///
|
|
/// The depth of the given event is calculated based on the depth of it's closest "parent"
|
|
/// power_level event. If there have been two power events the after the most recent are
|
|
/// depth 0, the events before (with the first power level as a parent) will be marked
|
|
/// as depth 1. depth 1 is "older" than depth 0.
|
|
pub fn mainline_sort(
|
|
room_id: &RoomId,
|
|
to_sort: &[EventId],
|
|
resolved_power_level: Option<&EventId>,
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
) -> Vec<EventId> {
|
|
tracing::debug!("mainline sort of events");
|
|
|
|
// There are no EventId's to sort, bail.
|
|
if to_sort.is_empty() {
|
|
return vec![];
|
|
}
|
|
|
|
let mut mainline = vec![];
|
|
let mut pl = resolved_power_level.cloned();
|
|
let mut idx = 0;
|
|
while let Some(p) = pl {
|
|
mainline.push(p.clone());
|
|
|
|
let event = StateResolution::get_or_load_event(room_id, &p, event_map, store).unwrap();
|
|
let auth_events = event.auth_events();
|
|
pl = None;
|
|
for aid in auth_events {
|
|
let ev =
|
|
StateResolution::get_or_load_event(room_id, &aid, event_map, store).unwrap();
|
|
if ev.is_type_and_key(EventType::RoomPowerLevels, "") {
|
|
pl = Some(aid.clone());
|
|
break;
|
|
}
|
|
}
|
|
// We yield occasionally when we're working with large data sets to
|
|
// ensure that we don't block the reactor loop for too long.
|
|
if idx != 0 && idx % _YIELD_AFTER_ITERATIONS == 0 {
|
|
// yield clock.sleep(0)
|
|
}
|
|
idx += 1;
|
|
}
|
|
|
|
let mainline_map = mainline
|
|
.iter()
|
|
.rev()
|
|
.enumerate()
|
|
.map(|(idx, eid)| ((*eid).clone(), idx))
|
|
.collect::<BTreeMap<_, _>>();
|
|
|
|
let mut order_map = BTreeMap::new();
|
|
for (idx, ev_id) in to_sort.iter().enumerate() {
|
|
if let Some(event) =
|
|
StateResolution::get_or_load_event(room_id, ev_id, event_map, store)
|
|
{
|
|
if let Ok(depth) = StateResolution::get_mainline_depth(
|
|
room_id,
|
|
Some(event),
|
|
&mainline_map,
|
|
event_map,
|
|
store,
|
|
) {
|
|
order_map.insert(
|
|
ev_id,
|
|
(
|
|
depth,
|
|
event_map
|
|
.get(ev_id)
|
|
.map(|ev| ev.origin_server_ts())
|
|
.cloned(),
|
|
ev_id, // TODO should this be a &str to sort lexically??
|
|
),
|
|
);
|
|
}
|
|
}
|
|
|
|
// We yield occasionally when we're working with large data sets to
|
|
// ensure that we don't block the reactor loop for too long.
|
|
if idx % _YIELD_AFTER_ITERATIONS == 0 {
|
|
// yield clock.sleep(0)
|
|
}
|
|
}
|
|
|
|
// sort the event_ids by their depth, timestamp and EventId
|
|
// unwrap is OK order map and sort_event_ids are from to_sort (the same Vec)
|
|
let mut sort_event_ids = order_map.keys().map(|&k| k.clone()).collect::<Vec<_>>();
|
|
sort_event_ids.sort_by_key(|sort_id| order_map.get(sort_id).unwrap());
|
|
|
|
sort_event_ids
|
|
}
|
|
|
|
/// Get the mainline depth from the `mainline_map` or finds a power_level event
|
|
/// that has an associated mainline depth.
|
|
fn get_mainline_depth(
|
|
room_id: &RoomId,
|
|
mut event: Option<Arc<StateEvent>>,
|
|
mainline_map: &EventMap<usize>,
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
) -> Result<usize> {
|
|
while let Some(sort_ev) = event {
|
|
tracing::debug!("mainline event_id {}", sort_ev.event_id().to_string());
|
|
let id = sort_ev.event_id();
|
|
if let Some(depth) = mainline_map.get(&id) {
|
|
return Ok(*depth);
|
|
}
|
|
|
|
// dbg!(&sort_ev);
|
|
let auth_events = sort_ev.auth_events();
|
|
event = None;
|
|
for aid in auth_events {
|
|
// dbg!(&aid);
|
|
let aev = StateResolution::get_or_load_event(room_id, &aid, event_map, store)
|
|
.ok_or_else(|| Error::NotFound("Auth event not found".to_owned()))?;
|
|
if aev.is_type_and_key(EventType::RoomPowerLevels, "") {
|
|
event = Some(aev);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Did not find a power level event so we default to zero
|
|
Ok(0)
|
|
}
|
|
|
|
fn add_event_and_auth_chain_to_graph(
|
|
room_id: &RoomId,
|
|
graph: &mut BTreeMap<EventId, Vec<EventId>>,
|
|
event_id: &EventId,
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
auth_diff: &[EventId],
|
|
) {
|
|
let mut state = vec![event_id.clone()];
|
|
while !state.is_empty() {
|
|
// we just checked if it was empty so unwrap is fine
|
|
let eid = state.pop().unwrap();
|
|
graph.entry(eid.clone()).or_insert_with(Vec::new);
|
|
// prefer the store to event as the store filters dedups the events
|
|
// otherwise it seems we can loop forever
|
|
for aid in StateResolution::get_or_load_event(room_id, &eid, event_map, store)
|
|
.unwrap()
|
|
.auth_events()
|
|
{
|
|
if auth_diff.contains(&aid) {
|
|
if !graph.contains_key(&aid) {
|
|
state.push(aid.clone());
|
|
}
|
|
|
|
// we just inserted this at the start of the while loop
|
|
graph.get_mut(&eid).unwrap().push(aid.clone());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO having the event_map as a field of self would allow us to keep
|
|
// cached state from `resolve` to `resolve` calls, good idea or not?
|
|
/// Uses the `event_map` to return the full PDU or fetches from the `StateStore` implementation
|
|
/// if the event_map does not have the PDU.
|
|
///
|
|
/// If the PDU is missing from the `event_map` it is added.
|
|
fn get_or_load_event(
|
|
room_id: &RoomId,
|
|
ev_id: &EventId,
|
|
event_map: &mut EventMap<Arc<StateEvent>>,
|
|
store: &dyn StateStore,
|
|
) -> Option<Arc<StateEvent>> {
|
|
if let Some(e) = event_map.get(ev_id) {
|
|
return Some(Arc::clone(e));
|
|
}
|
|
|
|
if let Ok(e) = store.get_event(room_id, ev_id) {
|
|
return Some(Arc::clone(event_map.entry(ev_id.clone()).or_insert(e)));
|
|
}
|
|
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn is_power_event(event_id: &EventId, event_map: &EventMap<Arc<StateEvent>>) -> bool {
|
|
match event_map.get(event_id) {
|
|
Some(state) => state.is_power_event(),
|
|
_ => false,
|
|
}
|
|
}
|